

Hydrogeological Atlas of Rajasthan

Other Nallahs Basin

Hydrogeological Atlas of Rajasthan

Contents:

List of Plates	Title	Page No.		
Plate I	Administrative Map	2		
Plate II	Topography	4		
Plate III	Rainfall Distribution	4		
Plate IV	Geological Map	6		
Plate V	Geomorphological Map	6		
Plate VI	Aquifer Map	8		
Plate VII	Location of Ground Water Monitoring Stations	8		
Plate VIII	Location of Exploratory Wells	10		
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10		
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12		
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12		
Plate XII	Electrical Conductivity Distribution (Average Pre- Monsoon 2005-09)	14		
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14		
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16		
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16		
Plate XVI	Depth to Bedrock	18		
Plate XVII	Map of Unconfined Aquifer	18		
Plate XVIII	Index Map Showing Alignment of Cross Sections	20		
Plate XIX	Cross Section Along A-A'	22		
Plate XX	Cross Section Along B-B'	22		
Plate XXI	Cross Section Along C-C'	24		
Plate XXII	Cross Section Along D-D'	24		
Plate XXIII	3D Model	26		
Glossary of terms				

JALOR

Location:

This is one of the very small basins in Rajasthan that measure less than 2,000 km² in area (approximately 1900 km²). It is located in southwestern part of the state, bounded in the north and northwest by Luni river basin and in the east by Sukli river basin. The southern border is shared with administrative boundary of Gujarat state. It stretches between 24° 31' 50.08" to 24° 56' 27.96" North latitude and 71° 31' 26.59" to 72° 27' 32.25" East longitudes. Major part of the basin (>90%) falls within Jalor district whereas the remaining area falls in Sirohi district. The basin is a collection of small streams that drain the area but exit the border of Rajasthan State before contributing to any major river. Bandi river, Bargaon, Rip, and Sukal are some of the streams flowing in the area.

The general slope of the terrain is from east to south or west with hills appearing in the east which slowly roll into plains towards west in Sanchore.

Administrative Set-up:

Administratively, Other Nallahs basin extends over parts of Ajmer, Jalor and Sirohi districts which are further divided into 5 blocks, encompassing 154 towns and villages.

S. No.	District Name	Area (sq. km)	% of Basin Area	Total Number of Blocks	Total Number of Towns and Villages
1	Jalor	1,731.2	91.1	4	138
2	Sirohi	168.6	8.9	1	16
Total		1899.8	100.0	5	154

Climate:

The basin falls in Semi-arid to Arid region and experiences extreme temperatures in winter (down to 4°C) and summer (reaches high of 50°C). Rainfall is scanty, with mean annual rainfall of about 353 mm only. As a result the rainy days are very few spread over the months of July to September and for most part of the year it remains dry. Winter ensues rainy season and till February the low temperatures can be felt. Summer sets in from April and May – June months are really hot.

European Union State Partnership Programme

Though the area that forms part of the basin is not large but still the elevation variation is significant, ranging from minimum of 21 m above man sea level in Jalor district (in the westernmost part) to a maximum of 977m amsl in the eastern hilly parts falling in Sirohi district. The eastern part is hilly and the general slope of the topography is westwards. The hills in Sirohi district and partly in Jalor district are major sources of drainage in the basin which flow westwards.

District Name	Min. Elevation (m amsl)	Max. Elevation (m amsl)	
Jalor	21.0	850.9	
Sirohi	203.7	976.8	

Table: District wise minimum and maximum elevation

RAINFALL

The general distribution of rainfall across the Other Nallah Basin can be visualized from isohyets presented in the Plate III. Total Annual rainfall for the rain gauge stations has been interpolated to understand the distribution across the basin. The year seems to have received a higher rainfall than the other years since it varies from a high of about 1225mm to a low of 938mm indicated by the coloured regions. Higher rainfall is received in the hilly region of eastern part of the basin and reducing gradually towards west.

	• •	-		-
S. No.	Rain gauge Stations	Total Monsoon Rainfall (mm)	Total Non-Monsoon Rainfall (mm)	Total Annual Rainfall (mm)
1	Raniwara	1,064.0	161.0	1,225.0
2	Sanchore	820.0	118.0	938.0

Table: District wise total annual rainfall (based on year 2010 meteorological station recordings (http://waterresources.rajasthan.gov.in)

The hills are largely formed by Delhi Super Group rocks whereas the alluvial cover in the western part of the basin is very pronounced. The sand cover of Recent to Sub-Recent age is primarily windblown sand with minor contribution from alluvial sources.

Age	Super-Group	Group/ Formation	Rock Types	
Sub Recent to Recent	Aeolian Deposits	Allundum	Windblown sand (sand dunes) cobble, pebble, gravel, sand,	
Sub-Recent to Recent	(and Colluvium)	Alluvium	silt, clay and kankar	
xxxUnconformityxxxx				
Lower Precambrian to	Lower Vindhyan	Malani Phyolito	Phyolitic layas with abundant pyroclastic material	
Upper Precambrian	Lower vindriyan		Rhyontic lavas with abundant pyroclastic material	
	Post-Delhi	Erinpura (Sandra Ambaji)	Cranitas gnoissas nogmatitas Amphilhalitas anidiaritas	
	(extrusives and intrusives)	granite and gneiss	Granites, gheisses, pegmatites, Amphiloontes, epidiontes	
Middle Proterozoic	Delhi	Sirohi	Phyllites, mica schists, Dolomites, marbles and gneisses	

GEOMORPHOLOGY

Origin	Landform Unit	Description
	Dune Valley Complex	Cluster of dunes and interdunal spaces with undulating topography formed due to wind-blown activity, comprising of unconsolidated sand and silt.
Aeolian	Obstacle Dune	Formed on windward/leeward sides of obstacle like isolated hills or continuous chain of hills, dune to obstruction in path of sand laden winds. Badly dissected well cemented and vegetated.
	Sandy Plain	Formed of aeolian activity, wind-blown sand with gentle sloping to undulating plain, comprising of coarse sand, fine sand, silt and clay.
	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials.
Denudational	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, criss-crossed by fractures and faults.
	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and clay. Terrain mainly undulating, produced by extensive deposition of alluvium.
Fluxial	Alluvial Plain (Sandy)	Flat to gentle undulating plain formed due to fluvial activity, mainly consists of gravels, sand, silt and clay with unconsolidated material of varying lithology, predominantly sand along river.
Fluviai	Flood Plain	The surface or strip of relatively smooth land adjacent to a river channel formed by river and covered with water when river over flows its bank. Normally subject to periodic flooding.
	Ravine	Small, narrow, deep, depression, smaller than gorges, larger than gulley, usually carved by running water.
	Salt Encrustation/Playa	Topographical depression comprising of clay, silt, sand and soluble salts, usually undrained and devoid of vegetation.
Hills		Hills and intervening valleys in hilly areas

While aquifers are formed in weathered and fractured hardrocks of Rhyolite and Granite, the alluvial aquifers formed in Older and younger alluviums are primary sources of groundwater in the basin. The alluvial aquifers together contribute to 96% of the sub surface distribution whereas the hardrock aquifers just make about 3%. The rhyolite aquifer is seen to the west of Raniwara in Jalor district around the hilly area, the granitic aquifers are seen in the easternmost part of the basin in Sirohi district adjacent to hills. The alluvial aquifers occupy the whole of rest of the basin.

Aquifer in Potential Zone	Area (sq km)	% of Basin Area	Description of the unit/Occurrence
Younger Alluvium	454.9	23.9	It is largely constituted of aeolian and fluvial sand, silt, clay, gravel and pebbles in varying proportions.
Older Alluvium	1,363.3	71.8	This litho-unit comprises of mixture of heterogeneous fine to medium grained sand, silt and kankar
Rhyolite	37.2	2	Rhyolite is porphyritic and has phenocryst of quartz and feldspar.
Granite	28.3	1.5	Light grey to pink colour, medium to coarse grained, and characteristically have porphyritic texture
Non Potential Zone	16.1	0.8	Hills and reserve forests
TOTAL	1,899.8	100.0	

LOCATION OF GROUND WATER MONITORING WELLS

The basin has a network of 42 ground water monitoring stations (40) in the basin owned by RGWD and CGWB (2). To further strengthen the network in terms of water quality

and water level monitoring, a total of 19 wells have been recommended for Jalor (18 wells) and Sirohi (1) districts.

District Name	Existing Monit	ting Ground Water Recommendonitoring Stations Ground Water N			ded Additional Nonitoring Stations
	CGWB	RGWD	Total	Water Level	Water quality
Jalor	2	34	36	0	18
Sirohi		6	6	0	1
Total	2	40	42	0	19

LEGEND					
Admin Boundary:		Water Bodies:	Ground Water Monitoring Stations:		
Block Headquarter	۲	River / Streams 🔶 🐔	CGWB O		
State Boundary		Ponds / Reservoirs	RGWD O		
District Boundary		Hills			
Block Boundary					
Basin Boundary	\sim				
Roads:					
National Highway					
State Highway					
Railway:					
Metre Gauge	x **********				

LOCATION OF EXPLORATORY WELLS

OTHER NALLAHS BASIN

In all there are 41 exploratory wells present in the basin drilled in the past by RGWD (37) and CGWB (4) that form basis for understanding of sub-surface and aquifer distribution.

District	Exploratory Wells			
District	CGWB	RGWD	Total	
Jalor	3	31	34	
Sirohi	1	6	7	
Total	4	37	41	

DEPTH TO WATER LEVEL (PRE MONSOON - 2010)

The general depth to water level in the basin ranges from 10 to 40 meters below ground level, as seen in the eastern and western parts of the basin. The central part of the basin however, shows higher depth to water levels reaching upto 70m bgl.

Total Area	overage (sq km)*	Depth to water level	
(sq km)	Sirohi	Jalor	(m bgl)
247.8	0.7	247.1	< 10
436.7	72.5	364.2	10 - 20
490.0	81.9	408.1	20 - 30
338.7	6.5	332.2	30 - 40
233.7	-	233.7	40 - 50
114.4	-	114.4	50 - 60
22.3	-	22.3	60 - 70
0.1	-	0.1	> 70
1,883.7	161.6	1,722.1	Total

* The area covered in the derived maps is less than the total basin area since the hills have been excluded from interpolation/contouring.

Ground Water Departmer Rajasthan

LEGEND

WATER TABLE ELEVATION (PRE MONSOON 2010)

European Unio

Water table elevation shows variation from less than 40m above mean sea level to about 280m amsl. On comparing this map with topography map it becomes evident that high water table corresponds to hilly areas in the east and has steeper gradients when moved to west. In the western parts of thick alluvial aquifers, the water table has lower elevations and also shows a flattening of the gradient with sluggish flows.

Depth to water table	District wise area c	Total Area	
(m amsl)	Jalor	Sirohi	(sq km)
< 40	502.5	-	502.5
40 - 60	395.2	-	395.2
60 - 80	201.3	-	201.3
80 - 100	74.4	-	74.4
100 - 120	58.6	-	58.6
120 - 140	76.8	-	76.8
140 - 160	89.5	-	89.5
160 - 180	93.0	-	93.0
180 - 200	74.7	26.8	101.5
200 - 220	59.4	17.5	76.9
220 - 240	49.0	13.8	62.8
240 - 260	47.7	42.8	90.5
260 - 280	-	50.9	50.9
> 280	-	9.8	9.8
Total	1,722.1	161.6	1,883.7

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

The hardrock aquifer/hilly areas show higher fluctuation in ground water levels indicating rise of 10m from pre monsoon water levels. In the alluvial aquifer/plain areas, which occupy most part of the basin, the water level fluctuation has been in the range of +2 to -2 m. There is an unusual fall of water level by around 4 meters in the central part of the area which appears to be due to some localized high ground water extraction.

District Nomo	District wise area coverage (sq km) within fluctuation range (m)					Total Area				
District Name	< -4	-4 to -2	-2 to 0	0 to 2	2 to 4	4 to 6	6 to 8	8 to 10	> 10	(sq km)
Jalor	3.4	25.6	202.9	1,172.7	188.2	77.5	37.8	12.7	1.3	1,722.1
Sirohi	-	-	8.0	102.5	33.8	10.6	2.8	3.0	0.9	161.6
Total	3.4	25.6	210.9	1,275.2	222.0	88.1	40.6	15.7	2.2	1,883.7

ELECTRICAL CONDUCTIVITY DISTRIBUTION

The Electrical Conductivity (at 25°C) distribution map is presented in Plate – XII shows a significantly large patch of red colour (EC >4000 μ S/cm) in the western alluvial part of the basin occupying about 46% of the area. The areas in the eastern half of the basin however, show the presence of good ground water quality having EC < 2000 μ S/cm (represented by Yellow coloured regions) which occupies approximately 33% of the basin area and is suitable for all purposes. The remaining area (about 20% of the basin) has moderate EC value (2000-4000 μ S/cm).

Electrical Conductivity Ranges	District w	Tatal Avaa			
(μS/cm at 25°C)	Jalo	or	Sir	ohi	Iotal Area
(Ave. of years 2005-09)	Area	% age	Area	% age	(sq km)
< 2000	470.6	27.3	161.6	100.0	632.2
2000-4000	385.0	22.4	-	-	385.0
> 4000	866.5	50.3	-	-	866.5
Total	1,722.1	100.0	161.6	100.0	1,883.7

CHLORIDE DISTRIBUTION

High chloride concentration in ground water may also render it unsuitable for domestic and other purposes. The red coloured regions in Plate – XIII are such areas where Chloride concentration is very high (> 1000 mg/l) which are largely found in alluvial aquifers in the western part of the basin. Good quality water with low Chloride concentration (<250 mg/l) are found in the close proximity of hilly areas as seen in the eastern part of the basin where the water table gradient has also been noticed to be higher than the western part. About 25% of the basin area located in central part of the basin between the high and low Chloride value areas, has moderate Chloride concentration in ground water that ranges in between 250-1000 mg/l.

Chloride Ranges	District w	Total Area			
(mg/l)	Jalor		Sirohi		Iotal Area
(Ave. of years 2005-09)	Area	% age	Area	% age	(sq km)
< 250	425.9	24.7	150.7	93.2	576.6
250 - 1000	508.5	29.6	10.9	6.8	519.4
> 1000	787.7	45.7	-	-	787.7
Total	1,722.1	100.0	161.6	100.0	1,883.7

The Fluoride concentration map (Plate XIV) displays a number of scattered patches of high fluoride concentration (>3 mg/l) in the west, north and eastern parts of the basin of which the one around Sanchore is the largest one occupying nearly 4% of the area whereas the rest of four patches together constitute the rest 6% of the high fluoride concentration area. The rest of the area has moderate to low concentration of fluoride in ground water.

Fluoride Ranges	District w	Total Area			
(mg/l)	Jalor		Sirohi		(og km)
(Ave. of years 2005-09)	Area	% age	Area	% age	(sq km)
< 1.5	857.6	49.8	103.3	63.9	960.9
1.5-3.0	694.3	40.3	42.3	26.2	736.6
> 3.0	170.2	9.9	16.0	9.9	186.2
Total	1,722.1	100.0	161.6	100.0	1,883.7

NITRATE DISTRIBUTION

Information of Nitrate concentration helps in understanding the suitability of ground water for agricultural purposes. A perusal of Plate – XV reveals a significantly large patch accounting for more than 65% of the basin area in the alluvial plains falls under high Nitrate category (>100 mg/l). Another 20% of the alluvial area shows presence of moderately high Nitrate concentration in ground water (i.e., 50 – 100 mg/l) which too is not very much suitable for agriculture but some crops may be grown. Hardly, 15% of the basin area (which also includes non-alluvial areas, contains low (<50 mg/l) Nitrate in the southeastern parts of the basin.

Nitrate Ranges	District w	Total Area			
(mg/l)	Jalor		Sirohi		
(Ave. of years 2005-09)	Area	% age	Area	% age	(sq km)
< 50	172.1	10.0	119.0	73.6	291.1
50-100	325.6	18.9	42.6	26.4	368.2
> 100	1,224.4	71.1	-	-	1,224.4
Total	1,722.1	100.0	161.6	100.0	1,883.7

Plate – XVI represents distribution of bedrock in terms of depth to bedrock map as meters below ground level. A perusal of map reveals that in general, the depth to bedrock in the basin is shallow in the east where depth ranges between negligible to 60m below ground level, moderately deep in the western part where the depth ranges between 60 to 100m bgl. In the central part of the basin the deepest depth is encountered which is about 120m bgl.

Depth to Bedrock	District wise area	Total Area	
(m bgl)	Jalor	Sirohi	(sq km)
< 40	-	31.4	31.4
40-60	307.7	130.2	437.9
60-80	42.0	-	42.0
80-100	786.3	-	786.3
100-120	497.6	-	497.6
> 120	88.5	-	88.5
Total	1,722.1	161.6	1,883.7

UNCONFINED AQUIFER

Hydrogeological properties are different for alluvial and hard rock aquifers and therefore, this aquifer has been mapped as two separate regions viz, unconfined aquifers in alluvial and in hard rock areas. Aquifers formed in weathered/fractured zone of hard rocks occupy very limited areas i.e., only about 65 sq km (less than 4% of basin area) whereas the rest of the basin has aquifers formed in alluvial material which attain high thicknesses of more than 40m reaching about 60m in western part of the basin. In the eastern part of the basin the thickness of alluvial aquifers is however low, estimated to be less than 20m.

Alluvial areas:

Unconfined aquifer	District wise area co	overage (sq km)	Total Area
Thickness (m)	Jalor	Sirohi	(sq km)
< 10	403.4	104.3	507.7
10-20	217.6	29.6	247.2
20-30	283.4	3.1	286.5
30-40	218.9	-	218.9
40-50	260.0	-	260.0
50-60	227.0	-	227.0
> 60	71.0	-	71.0
Total	1,681.3	137.0	1,818.3

Hardrock areas:

Unconfined aquifer	District wise are	Total Area	
Thickness (m)	Jalor	Sirohi	(sq km)
< 10	17.4	1.1	18.5
> 10	23.4	23.5	46.9
Total	40.8	24.6	65.4

Block Boundary

Hills

Basin Boundary

CROSS SECTIONS

OTHER NALLAHS BASIN

Several hydrogeologic cross sections have been drawn to better depict the sub-surface distribution of lithology. These sections have been overlaid with geological maps and structural faults if there are any have been transferred for verification of their impact on sub-surface material disposition. The alignment of the cross sections is shown in Plate – XVIII and corresponding sections are presented in Plates – XIX to XXIII. The general alignment of the sections is as given below:

Name of Section Line	Orientation
Section AA'	W–E
Section BB'	NW–SE
Section CC'	NW–SE
Section DD'	NW–SE

Section A-A':

This section is the longest of the sections plotted in the area and trends in W-E direction, cutting across the basin and covering a distance of about 45 kms (Plate – XIX). Lithologs acquired from 5 boreholes was utilized in interpretation of sub-surface lithology in this section. The section depicts the disposition of different layers of sand and clay along with shale. On perusal of the cross section, it is apparent that the total area along the cross-section is occupied by sand. A narrow strip of clay is also is present. Hardrock is encountered in only easternmost well.

The water level varies from 50 m amsl to 140 m amsl in the section following the surface topography.

Section B-B':

The B-B' section trending from NW-SE and covers an area of 18 kms shown in (Plate – XX). The lithologs of 4 boreholes were taken in to account while preparing the section. The section depicts sand and clay layers of alluvial aquifers. The alternate sequence of sand and clay is forming the major aquifer system in these areas.

It is observed from pre monsoon 2010 data the ground water level varies from 50 m amsl to 70 m amsl from NW – SE of the section drawn in the Other Nallahs river basin.

CROSS SECTIONS

Section C-C':

OTHER NALLAHS BASIN

The C-C' section has been prepared to visualize variation across the basin trending from NW-SE in the central part of the basin and covers a length of 25 kms (Plate – XXI). The lithologs of 4 boreholes are taken into account while preparing this cross-section. The section depicts the disposition of different layers of sand and clay along with shale. In the rest of the area, sand is predominating while there are some lenses of clay. Hardrock is encountered in easternmost well. The cross-section depicts that alluvium is forming the major aquifer system underlain by shale.

The water level varies from 48 m amsl to 130 m amsl based on the data of pre monsoon 2010.

Section D-D':

The section is trending from NW-SE covers a length of 23 kms (Plate – XXII). To depict the lithology of the cross-section, 4 boreholes along with surrounding well information are chosen. The cross section cuts across two streams namely Bargaon and Sukal. The section depicts the disposition of sand along with granite. Granite comprises the bedrock which is overlain by sand. The thickness of sand varies from 5m to 65m at various places in the section

It is observed from pre monsoon 2010 data the ground water level varies from 215 m amsl to 270 m amsl.

3D MODEL OF AQUIFERS

OTHER NALLAHS BASIN

The three dimensional litho-stratigraphic model has been developed for the Other Nallahs basin using interpolation techniques on the data of scattered wells given as an input. Plate – XXII represents a 3D model depicting the various litho-stratigraphic units in the entire river basin. With this model it is apparent that beneath the thin cover of top soil, there are two persistent clay horizons in the region separating two sandy aquifers. The top sandy aquifer is present in the whole area. Beneath the sand layers there is indication of a persistent weathered and fractured bed rock acting as aquifer. From the model it has also been observed that a small patch of weathered and fractured rock acing as an unconfined aquifer in the southwestern part of the area.

The depth of hard rock is shallow in the southeastern part as compared to the northeastern part of the basin. Granite constitutes the basement.

Glossary of terms

S. No.	Technical Terms	Definition
1		A saturated geological formation which has good permeability to
	AQUIFEN	supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a groundwater reservoir by man-made activity
		The sum total of all atmospheric or meteorological influences
4	CLIMATE	principally temperature, moisture, wind, pressure and evaporation
		of a region.
5		A water bearing strata having confined impermeable overburden. In
5		this aquifer, water level represents the piezometric head.
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water,
Ŭ	contramination	which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several
10	GROOND WATER DASIN	connected and interrelated aquifers.
11	GROUNDWATER	The natural infiltration of surface water into the ground.
	RECHARGE	
12	HARD WATER	The water which does not produce sufficient foam with soap.
13	HYDRAULIC	A constant that serves as a measure of permeability of porous
15	CONDUCTIVITY	medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20	рН	Value of hydrogen-ion concentration in water. Used as an indicator
20		of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from
		outside to the aquifer.
23	SAFE VIELD	Amount of water which can be extracted from groundwater without
		producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20
		inches.
26	SEMI-CONFINED	Aquifer overlain and/or underlain by a relatively thin semi-pervious
	AQUIFER	layer.
27	SPECIEIC YIELD	Quantity of water which is released by a formation after its
		complete saturation.
28	TOTAL DISSOLVED	Total weight of dissolved mineral constituents in water per unit
	SOLIDS	volume (or weight) of water in the sample.

Dug wells selected on grid basis for monitoring of state water level.

Wind-blown sand deposits

S. No.

G.W. MONITORING

EOLIAN DEPOSITS

STATION

A A A KAR KAR AN AN

S No	Myths	Facts
1	What is Ground Water	Water which occurs below the land in geological
	an underground lake	formations/rocks is Ground water
	 a net work of underground rivers 	
	 a bowl filled with water 	
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

11

-

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.